
Building the Support for Radar Processing across Memory Hierarchies:
On the Development of an Array Class with Shapes

using Expression Templates in C++ ∗

Lenore R. Mullin Xingmin Luo† Lawrence A. Bush‡

August 7, 2003

Abstract
“Embedded software processing requirements for DSP, especially for radar, are ex-
pected to exceed1×1012 operations per second within five years [3].” Therefore,
the efficient use of memory at all levels of the hierarchy is essential. These array
based computations involve the composition of linear and multi-linear operators.
Previous work illustrated how a general array algebra (MoA), and a “suitably rich
compatible index calculus [3]” (Psi-Calculus), could be used to develop software
for radar and other DSP applications. This software needs to be tuned to use the
levels of memory hierarchies efficiently without the materialization of array val-
ued temporaries [3]. Monolithic compiler experiments presented in [4] illustrated
how these theories could be mechanized using expression templates in C++. The
present work continues these investigations by defining an N-dimensionalarray
class with shape in order to support the mechanization of linear transformations
in the Psi-Calculus (ψ-Calculus). We show that this class extends the support for
array operations in the Portable Expression Template Engine (<PETE>) while
offering performance that is competitive with hand coded C. Such extensions are
needed to support the dimension lifting which maps arrays to all levels of a mem-
ory/processor hierarchy.

Keywords: embedded digital systems, radar, signal processing, arrays,
high performance, index calculus, shapes, psi, MoA.

Introduction
Motivating this paper is the development of efficient algorithms for radar and more
generally DSP applications. “Reasoning about radar, from acomputational per-
spective, entails reasoning about the data structures underlying the algorithms for
radar computations [3].” Arrays are the data structures underlying algorithms for
radar computations. These algorithms are characterized by linear and multi-linear
matrix operations. Therefore, a high level array algebra can facilitate an efficient,
scalable and portable algorithm design. “Consequently, we believe that the future
development of efficient, scalable, portable algorithms, for radar, more generally
for DSP applications, will be greatly facilitated by the use of a high-level array
algebra during algorithm design. Additionally, since program efficiency depends
critically upon the efficient use of memory/processor hierarchies, this array al-
gebra should be combined with a suitably powerful index calculus. This calculus
should facilitate data layout, movement, and manipulation at all levels of the mem-
ory/processor hierarchy. [3].” In [5, 1] it is shown that MoA andψ-Calculus are
suitable for such an algebra and calculus. For example, [1] presents in detail how
MoA and theψ-Calculus can be integrated into a Time Domain (TD) convolution
algorithm. The algorithm development presented in [1] entailed array dimension
lifting and data restructuring. These were driven by the memory/processor hierar-
chy, coincident with array decompositions and layouts. This process was shown to
minimize temporary array materializations using these theories. Prior to this, com-
piler experiments were presented in [4] which demonstrated the machanization of
these theories via expression templates in C++.

∗NSF CCR 0105536
†Department of Computer Science, University of Albany, State University of

New York, Albany, NY 12222, U.S.A.{lenore, xluo}@cs.albany.edu
‡Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

12180, U.S.A. BushL2@cs.rpi.edu

Figure 1:Array class with shape for N-dimensional support.

TD Convolution
Synthetic aperture radar (SAR) has many application (i.e. target detection, contin-
uous observation of dynamic phenomena and classification of vegetation [6]). This
is due to its high resolution imaging capabilities under varying conditions (day and
night, all-weather). Various SAR signal processing methods have been developed
(i.e. spectral analysis (FFT) and frequency domain convolution). However, the
time-domain (TD) analysis is the simplest and most accurate algorithm for SAR
signal processing [6]. The TD algorithm is also the most computational intensive
which makes it useful only with SAR data of limited size [6]. Consequently, faster
TD algorithms are needed as the size and resolution requirements increase.

TD Convolution: MoA Design
In [4] a C++ vector class to define the TD convolution was presented. The related
experiments showed that the creation of array valued temporaries could be avoided,
enabling performance competitive with hand coded C.

A uni-processor using vector arguments on the vector class presented in [4]
was sufficient for those experiments. However, to support mapping to processor
memory hierarchies, vector arguments must be algebraically abstracted to higher
dimensional arrays. When processors are added to the design, the dimension of the
problem is lifted up. Adding a cache loop adds yet another dimension. Thus, we
started with a 1-dimensional problem, then abstracted the computation to a second
(time) dimension. Adding processor and cache mapping ultimately resulted in a 4-
dimensional problem. In addition, if we desire to support 3-dimensional or higher
array arguments, dimension lifting may require 10 or more dimensions. Such a
high dimensionality is not typically supported in today’s languages or libraries.
Figure 1 illustrates our ability to do so.

Shape : a newclass
< PETE> facilitates the creation of optimized C++ code to do various mathe-
matical operations. However,< PETE> operates on scalars and does not provide
an interface for multi-dimensional array computations that are required for theψ-
Calculus. In addition to the dimension limitation,< PETE> does not support

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Building the Support for Radar Processing across Memory Hierarchies:
On the Development of an Array Class with Shapes using Expression
Templates in C++

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science, University of Albany, State University
of New York, Albany, NY 12222, U.S.A. 12222; Department of Computer
Science, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1

Paper: Building the Support for Radar Building the Support for Radar
Processing Across Memory Processing Across Memory
Hierarchies:Hierarchies:

On the Development of an On the Development of an
Array Class with Shape using Array Class with Shape using

C++ Expression TemplatesC++ Expression Templates

by Lenore R. Mullin, Xingmin Luo
and Lawrence A. Bush

2

Processor / Memory MappingProcessor / Memory Mapping

processor 0

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

…

< 12 11 10 >
< 15 14 13 >

< 15 14 13 >
< 12 11 10 >

…

< 15 14 13 >
< 12 11 10 >

< 0 0 1 >
< 0 0 0 >

< 0 0 0 >
< 0 1 2 >

…
< 1 2 3 >
< 4 5 6 >

X

< 12 11 10 >
< 15 14 13 >

< 15 14 13 >
< 12 11 10 >

…

< 15 14 13 >
< 12 11 10 >

< 5 6 7 >
< 2 3 4 >

< 3 4 5 >
< 6 7 8 >

…

< 9 0 0 >
< 0 0 0 >

X processor 1

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

Σ I=0CACHE
(T H) -1

Σ I=0
(T H) -1

…

3

<PETE> Shape<PETE> Shape

Results

0

0.25

0.5

0.75

0 700 1400 2100 2800

Matrix Size

T
im

e
-

S
ec

o
n

d
s C++ (static,int)

Array class (dynamic, int)
PETE (dynamic, int)
C (static,int)

const Expression <BinaryNode<OpAdd, Reference<Array> ,

BinaryNode<OpAdd, Reference<Array> ,

Reference<Array> > > > &expr = A + B + C

Programmability

C++

Object - Oriented
Programming

Language

Mechanization

<PETE>
Portable

Expression
Template
Engine

Psi - Calculus

Generalized
Array Indexing

Reduction
Semantics

Loop Unrolling

P
ro

cesso
r M

ap
p

in
g

Memory Mapping

Performance

Efficient Loops

Compile Time
Loop

Translation

Processor & Memory
Mapping

processor 0

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

…

< 12 11 10 >
< 15 14 13 >

< 15 14 13 >
< 12 11 10 >

…

< 15 14 13 >
< 12 11 10 >

< 0 0 1 >
< 0 0 0 >

< 0 0 0 >
< 0 1 2 >

…
< 1 2 3 >
< 4 5 6 >

X

< 12 11 10 >
< 15 14 13 >

< 15 14 13 >
< 12 11 10 >

…

< 15 14 13 >
< 12 11 10 >

< 5 6 7 >
< 2 3 4 >

< 3 4 5 >
< 6 7 8 >

…

< 9 0 0 >
< 0 0 0 >

X processor 1

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

S I=0
CACHE

(T H) -1

S I=0

(T H) -1

…

Operations

shift
take

rotate

10

Array.h
template <class T = int>
class Array
{

. . .
template<class RHS>
Array &operator=(const Expression<RHS> &rhs)
{

for(long i=0; i<this->size; i++)
d[i] = forEach(rhs, EvalLeaf1(i), OpCombine());

return *this; //equivalent to: a.d[i] = b.d[i]+c.d[i]+d.d[i]
}
. . .
private:

T * d;
vector <int> shape;
long size;

}

11

Array.h

N – dimensional capability

(required for processor /
memory mapping)

Psi-Calculus
platform

integrates
with

<PETE>

12

Results

0

0.25

0.5

0.75

0 700 1400 2100 2800

Matrix Size

T
im

e
-

S
ec

o
n

d
s) C++ (static,int)

Array class (dynamic, int)
PETE (dynamic, int)
C (static,int)

Array.h
Results : Comparable to Hand Coded C

the shape notion which is a component used to calculate the attribute evaluation
rules needed to rewrite an Abstract Syntax Tree (AST) defining array expressions.
Fortunately,< PETE> is designed to be extendable. To that end, we have imple-
mented a multi-dimensional array object extension to support shape. The shape
vector uses the Standard Template Library (STL)vector<int> class which
conveniently enables the needed N-dimensionality. The shape vector is passed to a
specializedArray class which constructs the multi-dimensional array and enables
assignments and arithmetic using operator overloading and expression templates
respectively.

Our experiments test the efficiency of our implementation and show that ours
is much faster than a standard C++ implementation and is similar in speed to an
implementation in hand-coded C. It also shows that the N-dimensional function-
ality of our Array class does not increase the overhead compared to a typical
PETE implementation.

Implementation
In a previous paper [4], experimental results were presented for computing 1-
Dimensional Arrays. To demonstrate our efforts to extend these ideas to multi-
dimensional arrays, we present experimental results of our multi-dimensionalArray
object implementation. The class is templated and therefore supports any data
type. This is necessary so that we can use common scientific computing data types
such asfloat anddouble. The experiments, therefore, test theinteger and
float data types for basic math operations which are fundamental toψ-Calculus
(i.e. distributing indexing over scalar operations).

The results presented here are for the addition1 of three multi-dimensional
arrays and the assignment of their result to a forth multi-dimensional array.

The Array is defined through a shape vector. This vector stores the size
of each dimension of anArray and is passed to theArray class constructor.
Default and copy constructors are also defined. This class incorporates operator
overloading and< PETE> related expression tree definitions. Our class gets its
efficiency by defining and implementing the high level operation of the expression
template. This allows our class to interface with< PETE>, utilizing its standard
mathematical operations and expression tree operation evaluation ordering.The
shape vector mentioned above is a relevant feature ofψ-Calculus.

Essentially, theψ-Calculus rules can be implemented at the iterator level.
Basically, we have complex non-algebraic array expressions that can be reduced
to memory access patterns. The multiple levels of indirection can be handled by
the iterator abstraction (the pointer on steroids).

Experiments
Our tests were compiled on two COTS platforms: an 800 MHz Pentium III pro-
cessor with 320MB of memory running Redhat Linux 7.2 and a 200 MHz IBM
PowerPC with 4GB of memory running AIX Version 5. The test code was com-
piled using Intel C++ and GCC respectively.

Figure 2 and 3 show our results which measure the differences between six
implementations of multi-dimensional array addition2: C++ (static, int),
Array class (dynamic, float), Array class (dynamic, int), < PETE>
(dynamic, int), C (dynamic, int) and C (static, int).

The results were similar on both platforms. Specifically, the C (static,
int) version performed the fastest and the C++ (static, int) version per-
formed the slowest. It is clear that the Object Oriented Programming (OOP) con-
structs of C++ affect performance. However, it is well known that OOP constructs
improve programmability (ease of use, extendibility, reusability and quality [2])
over C, in particular when extending the implementation to complex applications.
With < PETE> and our C++ Array class, we achieved similar performance as
is obtained using C where the loops are optimized by hand. This is shown by the
results using theinteger type which performed the same as the pure< PETE>
coded results. However, thefloat data type version was still significantly faster
than the traditional C++ (static, int) implementation. These results further
validate that we can integrate the high performance of optimized C loops into the
OO/C++ paradigm.

Overall, these experiments show that extending< PETE> to N-Dimensional
Array operations via theψ-Calculus shape notion is viable. The speed of the
computations is impressive even when using templated types including thefloat
data type.

1All < PETE> scalar operations are included.
2This could be any binary scalar operation: divide, ceiling, etc.

Figure 2: Five implementations of multi-dimensional addition.

Figure 3: Six implementations of multi-dimensional addition.

Conclusion and Future Work
The results shown demonstrate the viability of using< PETE> as a means to
optimize operations that are essential to a fully functionalψ-Calculus library. They
represent a very important step: inclusion of the shape notion into theArray
class.

These results are encouraging. Future work may be in reducing the detri-
mental performance caused by templating theArray type and adding additional
algorithm methods to enableψ-Calculus operations.

References
[1] H. B. Hunt III, L. Mullin, and D. J. Rosenkrantz. Towards an indexing calculus

for efficient distributed array computation. Technical Report 97–4, University
at Albany, Department of Computer Science, 1997.

[2] B. Meyer. Object-Oriented Software Construction, Second Edition. Prentice
Hall PTR, Upper Saddle River, New Jersey, 1997.

[3] L. Mullin, H. H. III, D. Rosenkrantz, and X. Luo. Efficient radar processing
via array and index algebras. InProceedings of the 1st Workshop on Opti-
mizations for DSP and Embedded Systems(ODES), 2003.

[4] L. Mullin, E. Rutledge, and R. Bond. Monolithic compiler experiments using
C++Expression Templates. InProceedings of the High Performance Embed-
ded Computing Workshop HPEC 2002, MIT Lincoln Laboratory, Lexington,
MA, 2002.

[5] L. M. R. Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University,
Dec. 1988.

[6] B. Wu, Y. Zhang, and J. Kong. Time-domain computer simulation of Synthetic
Apeture Radar(SAR) image for rough surface. InProceedings of Progress in
Electromagnetics Research Symposium. Research Laboratory of Electronics,
Massachussetts Institute of Technology, Cambridge, MA, July 2000.

2

	60P_Mullin.pdf
	mullin_precis.pdf
	Building the Support for Radar Processing Across Memory Hierarchies:
	Processor / Memory Mapping
	<PETE> Shape

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

